MATH 20D Spring 2023 Lecture 27.

Solving Systems of Equations Using Eigenvectors II

Outline

Solving Systems of Equations Using Eigenvectors

Complex Eigenvalues

Contents

Solving Systems of Equations Using Eigenvectors

Complex Eigenvalues

• Suppose A is a 2×2 matrix with constant entries. In Lecture 24 we asked ...

• Suppose A is a 2×2 matrix with constant entries. In Lecture 24 we asked . . .

Leading Questions

(a) How do we write down a general solutions to the equation

$$\mathbf{x}'(t) = A\mathbf{x}(t)? \tag{1}$$

where $\mathbf{x}(t) = \text{col}(x_1(t), x_2(t))$.

4/9

• Suppose A is a 2×2 matrix with constant entries. In Lecture 24 we asked ...

Leading Questions

(a) How do we write down a general solutions to the equation

$$\mathbf{x}'(t) = A\mathbf{x}(t)? \tag{1}$$

where $\mathbf{x}(t) = \text{col}(x_1(t), x_2(t))$.

(b) How do we solve (1) subject to an initial condition $\mathbf{x}(0) = \mathbf{x}_0$?

4/9

• Suppose A is a 2×2 matrix with constant entries. In Lecture 24 we asked ...

Leading Questions

(a) How do we write down a general solutions to the equation

$$\mathbf{x}'(t) = A\mathbf{x}(t)? \tag{1}$$

where $\mathbf{x}(t) = \text{col}(x_1(t), x_2(t))$.

(b) How do we solve (1) subject to an initial condition $\mathbf{x}(0) = \mathbf{x}_0$?

Answers (assuming *A* has two linearly independent eigenvectors)

Let \mathbf{v}_1 , \mathbf{v}_2 be linearly independent eigenvectors of A with eigenvalues λ_1 , λ_2 .

• Suppose A is a 2×2 matrix with constant entries. In Lecture 24 we asked . . .

Leading Questions

(a) How do we write down a general solutions to the equation

$$\mathbf{x}'(t) = A\mathbf{x}(t)? \tag{1}$$

where $\mathbf{x}(t) = \text{col}(x_1(t), x_2(t)).$

(b) How do we solve (1) subject to an initial condition $\mathbf{x}(0) = \mathbf{x}_0$?

Answers (assuming *A* has two linearly independent eigenvectors)

Let \mathbf{v}_1 , \mathbf{v}_2 be linearly independent eigenvectors of A with eigenvalues λ_1 , λ_2 .

(a) A general solution to (1) is

$$\mathbf{x}(t) = C_1 e^{\lambda_1 t} \mathbf{v}_1 + C_2 e^{\lambda_2 t} \mathbf{v}_2$$

(b) Let $X(t) = \begin{pmatrix} e^{\lambda_1 t} \mathbf{v}_1 & e^{\lambda_2 t} \mathbf{v}_2 \end{pmatrix}$ denote a fundamental matrix of (1) then

$$col(C_1, C_2) = X(0)^{-1}\mathbf{x}_0.$$

Examples with Intial Conditions

Example

Solve the system

$$\mathbf{x}'(t) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{x}(t)$$

subject to the initial condition

$$\mathbf{x}(0) = \begin{pmatrix} -2\\ 1 + \frac{1}{2}\sqrt{5} \end{pmatrix}$$

Examples with Intial Conditions

Example

Solve the system

$$\mathbf{x}'(t) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{x}(t)$$

subject to the initial condition

$$\mathbf{x}(0) = \begin{pmatrix} -2\\ 1 + \frac{1}{2}\sqrt{5} \end{pmatrix}$$

Example

Solve the system

$$\mathbf{x}'(t) = \begin{pmatrix} 1 & -1 \\ 3 & 1 \end{pmatrix} \mathbf{x}(t)$$

subject to the initial condition

$$\mathbf{x}(0) = \begin{pmatrix} -2/\sqrt{3} \\ 0 \end{pmatrix}$$

Contents

Solving Systems of Equations Using Eigenvectors

Complex Eigenvalues

• Let $a \neq 0$, b, and c be constants satisfying $b^2 - 4ac < 0$.

• Let $a \neq 0$, b, and c be constants satisfying $b^2 - 4ac < 0$. Then the equation

$$ay''(t) + by'(t) + cy(t) = 0$$
 (2)

has linearly independent solutions

$$y_1(t) = e^{\alpha t} \cos(\beta t)$$
 and $y_2(t) = e^{\alpha t} \sin(\beta t)$

where $\alpha = -b/2a$ and $\beta = \sqrt{4ac - b^2}/2a$.

• Let $a \neq 0$, b, and c be constants satisfying $b^2 - 4ac < 0$. Then the equation

$$ay''(t) + by'(t) + cy(t) = 0$$
 (2)

has linearly independent solutions

$$y_1(t) = e^{\alpha t} \cos(\beta t)$$
 and $y_2(t) = e^{\alpha t} \sin(\beta t)$

where $\alpha = -b/2a$ and $\beta = \sqrt{4ac - b^2}/2a$.

We can rewrite (2) as the matrix equation

$$\mathbf{x}'(t) = \begin{pmatrix} 0 & 1 \\ -c/a & -b/a \end{pmatrix} \mathbf{x}(t)$$

and the coefficient matrix has eigenvalue $\alpha + i\beta$ and $\alpha - i\beta$.

• Let $a \neq 0$, b, and c be constants satisfying $b^2 - 4ac < 0$. Then the equation

$$ay''(t) + by'(t) + cy(t) = 0$$
 (2)

has linearly independent solutions

$$y_1(t) = e^{\alpha t} \cos(\beta t)$$
 and $y_2(t) = e^{\alpha t} \sin(\beta t)$

where $\alpha = -b/2a$ and $\beta = \sqrt{4ac - b^2}/2a$.

We can rewrite (2) as the matrix equation

$$\mathbf{x}'(t) = \begin{pmatrix} 0 & 1 \\ -c/a & -b/a \end{pmatrix} \mathbf{x}(t)$$

and the coefficient matrix has eigenvalue $\alpha + i\beta$ and $\alpha - i\beta$.

 We might expect that if A is a 2-by-2 matrix with complex conjugate eigenvalues, then the system

$$\mathbf{x}'(t) = A\mathbf{x}(t)$$

has two linearly indepedent solutions which can be expressed in terms of sines and cosines.

Theorem

Suppose *A* is a 2-by-2 matrix with complex conjugate eigenvalues $\lambda_1 = \alpha + i\beta$ and $\lambda_2 = \alpha - i\beta$.

Theorem

Suppose A is a 2-by-2 matrix with complex conjugate eigenvalues $\lambda_1 = \alpha + i\beta$ and $\lambda_2 = \alpha - i\beta$. Let \mathbf{v} be an eigenvector of λ_1 and write

$$\mathbf{v} = \mathbf{a} + i\mathbf{b}$$

where **a** and **b** are vectors with real entries.

Theorem

Suppose A is a 2-by-2 matrix with complex conjugate eigenvalues $\lambda_1 = \alpha + i\beta$ and $\lambda_2 = \alpha - i\beta$. Let \mathbf{v} be an eigenvector of λ_1 and write

$$\mathbf{v} = \mathbf{a} + i\mathbf{b}$$

where a and b are vectors with real entries. Then

$$\mathbf{x}_1(t) = e^{\alpha t} \cos(\beta t) \mathbf{a} - e^{\alpha t} \sin(\beta t) \mathbf{b}$$
 and $\mathbf{x}_2(t) = e^{\alpha t} \sin(\beta t) \mathbf{a} + e^{\alpha t} \cos(\beta t) \mathbf{b}$

define linearly independent solutions to the equation $\mathbf{x}'(t) = A\mathbf{x}(t)$.

Theorem

Suppose A is a 2-by-2 matrix with complex conjugate eigenvalues $\lambda_1 = \alpha + i\beta$ and $\lambda_2 = \alpha - i\beta$. Let \mathbf{v} be an eigenvector of λ_1 and write

$$\mathbf{v} = \mathbf{a} + i\mathbf{b}$$

where a and b are vectors with real entries. Then

$$\mathbf{x}_1(t) = e^{\alpha t} \cos(\beta t) \mathbf{a} - e^{\alpha t} \sin(\beta t) \mathbf{b}$$
 and $\mathbf{x}_2(t) = e^{\alpha t} \sin(\beta t) \mathbf{a} + e^{\alpha t} \cos(\beta t) \mathbf{b}$

define linearly independent solutions to the equation $\mathbf{x}'(t) = A\mathbf{x}(t)$.

Example

Solve the initial value problem

$$\mathbf{x}'(t) = \begin{pmatrix} -1 & 2 \\ -1 & -3 \end{pmatrix} \mathbf{x}(t), \qquad \mathbf{x}(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Wrap up

THAT'S A WRAP STUDENTS

Wrap up

THAT'S A WRAP STUDENTS

• Thank you for the quarter and good luck on all your finals!

Wrap up

THAT'S A WRAP STUDENTS

- Thank you for the quarter and good luck on all your finals!
- Please don't forget to fill out the CAPE survey.