MATH 20D Spring 2023 Lecture 27.

Solving Systems of Equations Using Eigenvectors II

Outline

(1) Solving Systems of Equations Using Eigenvectors

(2) Complex Eigenvalues

Contents

(1) Solving Systems of Equations Using Eigenvectors

(2) Complex Eigenvalues

Last Time

- Suppose A is a 2×2 matrix with constant entries. In Lecture 24 we asked ...

Last Time

- Suppose A is a 2×2 matrix with constant entries. In Lecture 24 we asked...

Leading Questions

(a) How do we write down a general solutions to the equation

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) ? \tag{1}
\end{equation*}
$$

where $\mathbf{x}(t)=\operatorname{col}\left(x_{1}(t), x_{2}(t)\right)$.

Last Time

- Suppose A is a 2×2 matrix with constant entries. In Lecture 24 we asked...

Leading Questions

(a) How do we write down a general solutions to the equation

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) ? \tag{1}
\end{equation*}
$$

where $\mathbf{x}(t)=\operatorname{col}\left(x_{1}(t), x_{2}(t)\right)$.
(b) How do we solve (1) subject to an initial condition $\mathbf{x}(0)=\mathbf{x}_{0}$?

Last Time

- Suppose A is a 2×2 matrix with constant entries. In Lecture 24 we asked...

Leading Questions

(a) How do we write down a general solutions to the equation

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) ? \tag{1}
\end{equation*}
$$

where $\mathbf{x}(t)=\operatorname{col}\left(x_{1}(t), x_{2}(t)\right)$.
(b) How do we solve (1) subject to an initial condition $\mathbf{x}(0)=\mathbf{x}_{0}$?

Answers (assuming A has two linearly independent eigenvectors)
Let $\mathbf{v}_{1}, \mathbf{v}_{2}$ be linearly independent eigenvectors of A with eigenvalues λ_{1}, λ_{2}.

Last Time

- Suppose A is a 2×2 matrix with constant entries. In Lecture 24 we asked...

Leading Questions

(a) How do we write down a general solutions to the equation

$$
\begin{equation*}
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t) ? \tag{1}
\end{equation*}
$$

where $\mathbf{x}(t)=\operatorname{col}\left(x_{1}(t), x_{2}(t)\right)$.
(b) How do we solve (1) subject to an initial condition $\mathbf{x}(0)=\mathbf{x}_{0}$?

Answers (assuming A has two linearly independent eigenvectors)

Let $\mathbf{v}_{1}, \mathbf{v}_{2}$ be linearly independent eigenvectors of A with eigenvalues λ_{1}, λ_{2}.
(a) A general solution to (1) is

$$
\mathbf{x}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{2}
$$

(b) Let $X(t)=\left(\begin{array}{ll}e^{\lambda_{1} t} \mathbf{v}_{1} & e^{\lambda_{2} t} \mathbf{v}_{2}\end{array}\right)$ denote a fundamental matrix of (1) then

$$
\operatorname{col}\left(C_{1}, C_{2}\right)=X(0)^{-1} \mathbf{x}_{0} .
$$

Examples with Intial Conditions

Example

Solve the system

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \mathbf{x}(t)
$$

subject to the initial condition

$$
\mathbf{x}(0)=\binom{-2}{1+\frac{1}{2} \sqrt{5}}
$$

Examples with Intial Conditions

Example

Solve the system

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \mathbf{x}(t)
$$

subject to the initial condition

$$
\mathbf{x}(0)=\binom{-2}{1+\frac{1}{2} \sqrt{5}}
$$

Example

Solve the system

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{cc}
1 & -1 \\
3 & 1
\end{array}\right) \mathbf{x}(t)
$$

subject to the initial condition

$$
\mathbf{x}(0)=\binom{-2 / \sqrt{3}}{0}
$$

Contents

(1) Solving Systems of Equations Using Eigenvectors

(2) Complex Eigenvalues

Complex Eigenvalues I

- Let $a \neq 0, b$, and c be constants satisfying $b^{2}-4 a c<0$.

Complex Eigenvalues I

- Let $a \neq 0, b$, and c be constants satisfying $b^{2}-4 a c<0$. Then the equation

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{2}
\end{equation*}
$$

has linearly independent solutions
$y_{1}(t)=e^{\alpha t} \cos (\beta t) \quad$ and $\quad y_{2}(t)=e^{\alpha t} \sin (\beta t)$
where $\alpha=-b / 2 a$ and $\beta=\sqrt{4 a c-b^{2}} / 2 a$.

Complex Eigenvalues I

- Let $a \neq 0, b$, and c be constants satisfying $b^{2}-4 a c<0$. Then the equation

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{2}
\end{equation*}
$$

has linearly independent solutions

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t) \quad \text { and } \quad y_{2}(t)=e^{\alpha t} \sin (\beta t)
$$

where $\alpha=-b / 2 a$ and $\beta=\sqrt{4 a c-b^{2}} / 2 a$.

- We can rewrite (2) as the matrix equation

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{cc}
0 & 1 \\
-c / a & -b / a
\end{array}\right) \mathbf{x}(t)
$$

and the coefficient matrix has eigenvalue $\alpha+i \beta$ and $\alpha-i \beta$.

Complex Eigenvalues I

- Let $a \neq 0, b$, and c be constants satisfying $b^{2}-4 a c<0$. Then the equation

$$
\begin{equation*}
a y^{\prime \prime}(t)+b y^{\prime}(t)+c y(t)=0 \tag{2}
\end{equation*}
$$

has linearly independent solutions

$$
y_{1}(t)=e^{\alpha t} \cos (\beta t) \quad \text { and } \quad y_{2}(t)=e^{\alpha t} \sin (\beta t)
$$

where $\alpha=-b / 2 a$ and $\beta=\sqrt{4 a c-b^{2}} / 2 a$.

- We can rewrite (2) as the matrix equation

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{cc}
0 & 1 \\
-c / a & -b / a
\end{array}\right) \mathbf{x}(t)
$$

and the coefficient matrix has eigenvalue $\alpha+i \beta$ and $\alpha-i \beta$.

- We might expect that if A is a 2-by-2 matrix with complex conjugate eigenvalues, then the system

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)
$$

has two linearly indepedent solutions which can be expressed in terms of sines and cosines.

Complex Eigenvalues II

Theorem

Suppose A is a 2-by-2 matrix with complex conjugate eigenvalues $\lambda_{1}=\alpha+i \beta$ and $\lambda_{2}=\alpha-i \beta$.

Complex Eigenvalues II

Theorem

Suppose A is a 2-by-2 matrix with complex conjugate eigenvalues $\lambda_{1}=\alpha+i \beta$ and $\lambda_{2}=\alpha-i \beta$. Let \mathbf{v} be an eigenvector of λ_{1} and write

$$
\mathbf{v}=\mathbf{a}+i \mathbf{b}
$$

where \mathbf{a} and \mathbf{b} are vectors with real entries.

Complex Eigenvalues II

Theorem

Suppose A is a 2-by-2 matrix with complex conjugate eigenvalues $\lambda_{1}=\alpha+i \beta$ and $\lambda_{2}=\alpha-i \beta$. Let \mathbf{v} be an eigenvector of λ_{1} and write

$$
\mathbf{v}=\mathbf{a}+i \mathbf{b}
$$

where \mathbf{a} and \mathbf{b} are vectors with real entries. Then

$$
\mathbf{x}_{1}(t)=e^{\alpha t} \cos (\beta t) \mathbf{a}-e^{\alpha t} \sin (\beta t) \mathbf{b} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{\alpha t} \sin (\beta t) \mathbf{a}+e^{\alpha t} \cos (\beta t) \mathbf{b}
$$

define linearly independent solutions to the equation $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.

Complex Eigenvalues II

Theorem

Suppose A is a 2-by-2 matrix with complex conjugate eigenvalues $\lambda_{1}=\alpha+i \beta$ and $\lambda_{2}=\alpha-i \beta$. Let \mathbf{v} be an eigenvector of λ_{1} and write

$$
\mathbf{v}=\mathbf{a}+i \mathbf{b}
$$

where \mathbf{a} and \mathbf{b} are vectors with real entries. Then

$$
\mathbf{x}_{1}(t)=e^{\alpha t} \cos (\beta t) \mathbf{a}-e^{\alpha t} \sin (\beta t) \mathbf{b} \quad \text { and } \quad \mathbf{x}_{2}(t)=e^{\alpha t} \sin (\beta t) \mathbf{a}+e^{\alpha t} \cos (\beta t) \mathbf{b}
$$

define linearly independent solutions to the equation $\mathbf{x}^{\prime}(t)=A \mathbf{x}(t)$.

Example

Solve the initial value problem

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{cc}
-1 & 2 \\
-1 & -3
\end{array}\right) \mathbf{x}(t), \quad \mathbf{x}(0)=\binom{1}{2}
$$

Wrap up

THAT'S A WRAP STUDENTS

Wrap up

THAT'S A WRAP STUDENTS

- Thank you for the quarter and good luck on all your finals!

Wrap up

THAT'S A WRAP STUDENTS

- Thank you for the quarter and good luck on all your finals!
- Please don't forget to fill out the CAPE survey.

